Getting Started with Latent Class Analysis (LCA)

Yi-Fan Chen

Design and Analysis Core
Center for Clinical and Translational Science
University of Illinois at Chicago

January 13, 2015
What is Latent Class Analysis?

LCA

- **In general**, to find subgroup of cases from multivariate categorical data
- **In statistics**, to stratify cases, aggregated as the cross-classification table of observed variables, by an unobserved variable with unordered categories
- to explore subgroups which follow different parameters of a postulated statistical model
- **In applications**, for discovering case subtypes, reducing data dimensions, and predicting future cases in marketing, medicine, and behavior science, etc.
Comparison with other similar methods

- Cases vs. Variables (Factor analysis)
- Model-based vs. Data-driven method (K-means)
- Categorical vs. Continuous predictors (Discrete latent class)
- Without vs. With an outcome (Tree analysis)
Latent Class: a underlying class which satisfies a **conditional independence assumption**

- Within each latent class, variables are independent.
- If the effect of latent class membership is removed, all that remains is randomness.
- The effect of latent class membership eliminates all confounding between observed variables.
How does LCA work?

- **Procedure**: it estimates parameters of a simple parametric model using observed data.

- **Parameters**
 1. The prevalence of each latent class
 2. Conditional response probabilities for each combination of latent class and response level
How does LCA work? (cont.)

- **Model**: the probability of obtaining response pattern is a weighted average of the C class-specific probabilities

\[P(\mathbf{Y} = \mathbf{y}) = \sum_{r=1}^{C} P(R = r)P(\mathbf{Y} = \mathbf{y}|R = r) \]

Assumption: \[P(\mathbf{Y} = \mathbf{y}|R = r) = \prod_{p=1}^{P} P(Y_p = y_p|R = r) \]

$R = 1, \ldots, C$: latent variable with C classes

$Y_p = 1, \ldots, D_p$: one of P predictors/manifest variables with D_p levels
How does LCA work? (cont.)

- **Estimation**: maximum likelihood estimator (MLE)

\[\ln(L) = \sum_{i=1}^{I} n_i \times \ln\{P(Y = y_i)\}\]

\[I = \prod_{p=1}^{D_p}: \text{the number of possible answer patterns}\]

\[n_i: \text{the observed frequency in } i^{th} \text{ pattern}\]

- **Algorithms**
 - Expectation-Maximization (EM)
 - Newton-Raphson (NR)

- **Standard error estimates**
 - The second derivatives of model parameters
 - The parametric bootstrap method
How does LCA work? (cont.)

Estimation problems

- **Local maxima:** a local solution is obtained
 - Try different parameter initial values
- **Identifiability problem:** more than one solutions exist when having more unknowns than equations
 - Check the rank of the matrix of the second derivatives of model parameters
 - Try different initial values to see if different solutions exist
 - Simplify the model
 - Impose constraints
- **Boundary solutions:** probability 0 causes numerical problems
 - Impose constraints
 - Include other kinds of prior information on the parameters
Cases classification

1 A fuzzy/probabilistical classification using the Bayes’ theorem to calculate a posterior probability of a case’s membership in each class

\[P(R = r | Y = y) = \frac{ P(R=r) P(Y=y | R=r) }{ P(Y=y) } \]

2 Either a modal assignment to a latent class with the highest posterior probability
Model evaluation

Goodness of fit

- Comparing the observed cross classification frequencies to the expected frequencies predicted by using a likelihood ratio Chi-squared statistic (G-squared)

\[G^2 = \sum_{i=1}^{l} 2 \times f(i) \times \ln\{f(i)/e(i)\} \]

\[= \sum_{i=1}^{l} 2 \times n_i \times \ln\left\{ \frac{n_i}{N \times P(Y=y_i)} \right\} \sim \chi^2_{df} \]

\[df = \prod_{p=1}^{P} D_p - C \times \{1 + \sum_{p=1}^{P} (D_p - 1)\} \]

- Sparse table problem: use parametric bootstrapping or parsimony indices

\[N: \text{total number of cases} \]

\[f(i): \text{the observed frequency of response patterns} \]

\[e(i): \text{the expected frequency of response patterns} \]
Goodness of fit (cont.)

- Using the difference of G-squared statistics for comparing two nested models
- Information statistics for comparing non-nested models: AIC, BIC

Classification error

\[E = \sum_{i=1}^{I} \frac{n_i}{N} \{1 - \max\{P(R = r | Y = y_i)\}\} \]

\[\Rightarrow \text{Reduction of errors measure} = \lambda = 1 - \frac{E}{\max\{P(R=r)\}} \]
Determination of the number of latent classes

Methods

- Try different plausible number of latent classes and assess the fit of each other to the data
- Use information indices, such as AIC, BIC with a scree-type test which shows a leveling-off point in a plot of model fit vs. number of latent classes
- Conduct computation-intensive approaches, such as bootstrapping and Monte Carlo
Extensions of LCA

- **LC model as a log-linear model by Haberman (1979)**

\[
\ln \{P(R = r, Y = y)\} = \beta + \beta_R + \sum_{p=1}^P \beta_{Yp} + \sum_{p=1}^P \beta_{R,Yp}
\]

\[
P(Y_p = y_p | R = r) = \frac{\exp(\beta_{Yp} + \beta_{R,Yp})}{\sum_{j=1}^D \exp(\beta_{Yp} + \beta_{R,Yp})}
\]

- **Inclusion of covariates, \(Z \), that describe the latent variable**

\[
P(R = r | Z = z) = \frac{\exp(\alpha_R + \sum_{k=1}^K \alpha_{R,Zk} \cdot z_k)}{\sum_{l=1}^C \exp(\alpha_R + \sum_{k=1}^K \alpha_{l,Zk} \cdot z_k)}
\]

- **Inclusion of ordering of categories:** impose ordinal constraints via association model structures on \(\beta^{R,Yp} \), such as

\[
\beta^{R,Yp} = \beta_{R,Yp} \cdot y_p
\]
When the local independence fails,
- Increase the number of latent classes
- Include direct effects between certain variables to relax the assumption

LC model with continuous variables: latent profile model, mixture-model clustering, model-based clustering, latent discriminant analysis, LC clustering

\[P(Y = y) = \sum_{r=1}^{C} P(R = r)f(Y = y | R = r) \]
Software

- CDAS/MLLSA
- CLIMMIX
- DILTRAN
- DISTAN
- GLIMMIX 2.0
- Latent GOLD
- LCABIN
- LCAG
- LEM
- LLCA
- Miracle 32
- MLLSA
- Mplus
- Multimix
- NEWTON and LAT
- PANMARK
- PRASCH
- PROC LCA/PROC LTA
- R: LCA, LCMM, poLCA, MCLUST
- WinLTA
- WINMIRA
A Simple Example by using poLCA in R

- **poLCA**: by Linzer and Lewis, 2014
 - Estimation: EM algorithm and Newton-Raphson
 - Standard error estimation: empirical observed information matrix
 - Data format: the manifest variables must be coded as integer values starting at 1 for the first category

- **carcinoma data**: from Agresti, 2002
 - Data: 7 binary variables which are the ratings by 7 pathologists of 118 slides on the presence or absence of carcinoma
 - Goal: to investigate the interobserver agreement by examining how subjects might be divided into groups depending upon the consistency of their diagnoses
> #-- load package
> #install.packages('poLCA')
> library(poLCA)

Loading required package: scatterplot3d
Loading required package: MASS

> #-- load built-in data
> data("carcinoma")
> tail(head(carcinoma, 66))

 A B C D E F G
61 2 2 1 1 2 1 2
62 2 2 1 1 2 1 2
63 2 2 1 1 2 1 2
64 2 2 1 1 2 1 2
65 2 2 1 1 2 1 2
66 2 2 1 1 2 1 2

> dim(carcinoma)

[1] 118 7
```r
#-- LCA
f <- cbind(A, B, C, D, E, F, G) ~ 1
lc3 <- poLCA(formula=f, data=carcinoma, nclass=3, graphs=TRUE,
              na.rm=TRUE, nrep=10, maxiter=1000, tol=1e-10,
              probs.start=NULL, verbose=TRUE, calc.se=TRUE)

Model 1: llik = -293.705 ... best llik = -293.705
Model 2: llik = -293.705 ... best llik = -293.705
Model 3: llik = -293.705 ... best llik = -293.705
Model 4: llik = -293.705 ... best llik = -293.705
Model 5: llik = -293.705 ... best llik = -293.705
Model 6: llik = -293.705 ... best llik = -293.705
Model 7: llik = -293.705 ... best llik = -293.705
Model 8: llik = -293.705 ... best llik = -293.705
Model 9: llik = -293.705 ... best llik = -293.705
Model 10: llik = -293.705 ... best llik = -293.705
```
Classes; population share
Manifest variables
Pr(outcome)
Conditional item response (column) probabilities, by outcome variable, for each class (row)

A

<table>
<thead>
<tr>
<th></th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>0.9427</td>
<td>0.0573</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>class 3:</td>
<td>0.4872</td>
<td>0.5128</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>0.8621</td>
<td>0.1379</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.0191</td>
<td>0.9809</td>
</tr>
<tr>
<td>class 3:</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.1425</td>
<td>0.8575</td>
</tr>
<tr>
<td>class 3:</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.4138</td>
<td>0.5862</td>
</tr>
<tr>
<td>class 3:</td>
<td>0.9424</td>
<td>0.0576</td>
</tr>
</tbody>
</table>
E

<table>
<thead>
<tr>
<th></th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>0.9449</td>
<td>0.0551</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>class 3:</td>
<td>0.2494</td>
<td>0.7506</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th></th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.5236</td>
<td>0.4764</td>
</tr>
<tr>
<td>class 3:</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th></th>
<th>Pr(1)</th>
<th>Pr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1:</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>class 2:</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>class 3:</td>
<td>0.3693</td>
<td>0.6307</td>
</tr>
</tbody>
</table>

Estimated class population shares
0.3736 0.4447 0.1817

Predicted class memberships (by modal posterior prob.)
0.3729 0.4322 0.1949
Fit for 3 latent classes:

number of observations: 118
number of estimated parameters: 23
residual degrees of freedom: 95
maximum log-likelihood: -293.705

AIC(3): 633.41
BIC(3): 697.1357
G^2(3): 15.26171 (Likelihood ratio/deviance statistic)
X^2(3): 20.50335 (Chi-square goodness of fit)

> #-- Goodness of fit
> capture.output(lc2 <- poLCA(f, carcinoma, nclass = 2), file='NUL')
> capture.output(lc4 <- poLCA(f, carcinoma, nclass = 4), file='NUL')
> lc2$bic

[1] 706.0739

> lc3$bic

[1] 697.1357

> lc4$bic

[1] 726.4629
```r
> #-- Classification
> round(tail(head(lc3$posterior,66)),2)

   [,1] [,2] [,3]
[61,] 0 0.24 0.76
[62,] 0 0.24 0.76
[63,] 0 0.24 0.76
[64,] 0 0.24 0.76
[65,] 0 0.24 0.76
[66,] 0 0.24 0.76

> tail(head(lc3$predclass,66))

[1] 3 3 3 3 3 3
```
Dr. John Uebersax at California Polytechnic State University
http://www.john-uebersax.com/stat/faq.htm

Thank you!
yfchen2@uic.edu